msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm
نویسندگان
چکیده
Many of the mechanisms that govern the patterning of the Drosophila neuroectoderm and mesoderm are still unknown. Here we report the sequence, expression, and regulation of the homeobox gene msh, which is likely to play an important role in the early patterning events of these two tissue primordia. msh expression is first observed in late blastoderm embryos and occurs in longitudinal bands of cells that are fated to become lateral neuroectoderm. This expression is under the control of dorsoventral axis-determination genes and depends on dpp-mediated repression in the dorsal half of the embryo and on fib-(EGF-) mediated repression ventrally. The bands of msh expression define the cells that will form the lateral columns of proneural gene expression and give rise to the lateral row of SI neuroblasts. This suggests that msh may be one of the upstream regulators of the achaete-scute (AS-C) genes and may play a role that is analogous to that of the homeobox gene vnd/NK2 in the medial sector of the neuroectoderm. During neuroblast segregation, msh expression is maintained in a subset of neuroblasts, indicating that msh, like vnd/NK2, could function in both dorsoventral patterning of the neuroectoderm and neuroblast specification. The later phase of msh expression that occurs after the first wave of neuroblast segregation in defined ectodermal and mesodermal clusters of cells points to similar roles of msh in patterning and cell fate specification of the peripheral nervous system, dorsal musculature, and the fat body. A comparison of the expression patterns of the vertebrate homologs of msh, vnd/NK2, and AS-C genes reveals striking similarities in dorsoventral patterning of the Drosophila and vertebrate neuroectoderm and indicates that genetic circuitries in neural patterning are evolutionarily conserved.
منابع مشابه
Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity.
One of the first steps in neurogenesis is the diversification of cells along the dorsoventral axis. In Drosophila the central nervous system develops from three longitudinal columns of cells: ventral cells that express the vnd/nk2 homeobox gene, intermediate cells, and dorsal cells that express the msh homeobox gene. Here we describe a new Drosophila homeobox gene, intermediate neuroblasts defe...
متن کاملEms and Nkx6 are central regulators in dorsoventral patterning of the Drosophila brain.
In central nervous system development, the identity of neural stem cells (neuroblasts) critically depends on the precise spatial patterning of the neuroectoderm in the dorsoventral (DV) axis. Here, we uncover a novel gene regulatory network underlying DV patterning in the Drosophila brain, and show that the cephalic gap gene empty spiracles (ems) and the Nk6 homeobox gene (Nkx6) encode key regu...
متن کاملConvergence of dorsal, dpp, and egfr signaling pathways subdivides the drosophila neuroectoderm into three dorsal-ventral columns.
An important question in neurobiology is how different cell fates are established along the dorsoventral (DV) axis of the central nervous system (CNS). Here we investigate the origins of DV patterning within the Drosophila CNS. The earliest sign of neural DV patterning is the expression of three homeobox genes in the neuroectoderm-ventral nervous system defective (vnd), intermediate neuroblasts...
متن کاملBMPs Regulate msx Gene Expression in the Dorsal Neuroectoderm of Drosophila and Vertebrates by Distinct Mechanisms
In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral ax...
متن کاملSegment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila.
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 58 شماره
صفحات -
تاریخ انتشار 1996